Mining the Social Web, 2nd Edition

Chapter 5: . Mining Web Pages: Using Natural Language Processing to Understand Human Language, Summarize Blog Posts, and More

This IPython Notebook provides an interactive way to follow along with and explore the numbered examples from Mining the Social Web (2nd Edition). The intent behind this notebook is to reinforce the concepts from the sample code in a fun, convenient, and effective way. This notebook assumes that you are reading along with the book and have the context of the discussion as you work through these exercises.

In the somewhat unlikely event that you've somehow stumbled across this notebook outside of its context on GitHub, you can find the full source code repository here.

You are free to use or adapt this notebook for any purpose you'd like. However, please respect the Simplified BSD License that governs its use.

Note: If you find yourself wanting to copy output files from this notebook back to your host environment, see the bottom of this notebook for one possible way to do it.

Example 1. Using boilerpipe to extract the text from a web page

In [ ]:
from boilerpipe.extract import Extractor

URL='http://radar.oreilly.com/2010/07/louvre-industrial-age-henry-ford.html'

extractor = Extractor(extractor='ArticleExtractor', url=URL)

print extractor.getText()

Example 2. Using feedparser to extract the text (and other fields) from an RSS or Atom feed

In [ ]:
import feedparser

FEED_URL='http://feeds.feedburner.com/oreilly/radar/atom'

fp = feedparser.parse(FEED_URL)

for e in fp.entries:
    print e.title
    print e.links[0].href
    print e.content[0].value
In [ ]:
Create an empty graph
Create an empty queue to keep track of nodes that need to be processed

Add the starting point to the graph as the root node
Add the root node to a queue for processing

Repeat until some maximum depth is reached or the queue is empty:
  Remove a node from the queue 
  For each of the node's neighbors: 
    If the neighbor hasn't already been processed: 
      Add it to the queue 
      Add it to the graph 
      Create an edge in the graph that connects the node and its neighbor

Naive sentence detection based on periods

In [ ]:
txt = "Mr. Green killed Colonel Mustard in the study with the candlestick. Mr. Green is not a very nice fellow."
print txt.split(".")

More sophisticated sentence detection

In [ ]:
import nltk

# Downloading nltk packages used in this example
nltk.download('punkt')

sentences = nltk.tokenize.sent_tokenize(txt)
print sentences

Tokenization of sentences

In [ ]:
tokens = [nltk.tokenize.word_tokenize(s) for s in sentences]
print tokens

Part of speech tagging for tokens

In [ ]:
# Downloading nltk packages used in this example
nltk.download('maxent_treebank_pos_tagger')

pos_tagged_tokens = [nltk.pos_tag(t) for t in tokens]
print pos_tagged_tokens

Named entity extraction/chunking for tokens

In [ ]:
# Downloading nltk packages used in this example
nltk.download('maxent_ne_chunker')
nltk.download('words')

ne_chunks = nltk.batch_ne_chunk(pos_tagged_tokens)
print ne_chunks
print ne_chunks[0].pprint() # You can prettyprint each chunk in the tree

Example 4. Harvesting blog data by parsing feeds

In [ ]:
import os
import sys
import json
import feedparser
from BeautifulSoup import BeautifulStoneSoup
from nltk import clean_html

FEED_URL = 'http://feeds.feedburner.com/oreilly/radar/atom'

def cleanHtml(html):
    return BeautifulStoneSoup(clean_html(html),
                convertEntities=BeautifulStoneSoup.HTML_ENTITIES).contents[0]

fp = feedparser.parse(FEED_URL)

print "Fetched %s entries from '%s'" % (len(fp.entries[0].title), fp.feed.title)

blog_posts = []
for e in fp.entries:
    blog_posts.append({'title': e.title, 'content'
                      : cleanHtml(e.content[0].value), 'link': e.links[0].href})

out_file = os.path.join('resources', 'ch05-webpages', 'feed.json')
f = open(out_file, 'w')
f.write(json.dumps(blog_posts, indent=1))
f.close()

print 'Wrote output file to %s' % (f.name, )

Example 5. Using NLTK’s NLP tools to process human language in blog data

In [ ]:
import json
import nltk

# Download nltk packages used in this example
nltk.download('stopwords')

BLOG_DATA = "resources/ch05-webpages/feed.json"

blog_data = json.loads(open(BLOG_DATA).read())

# Customize your list of stopwords as needed. Here, we add common
# punctuation and contraction artifacts.

stop_words = nltk.corpus.stopwords.words('english') + [
    '.',
    ',',
    '--',
    '\'s',
    '?',
    ')',
    '(',
    ':',
    '\'',
    '\'re',
    '"',
    '-',
    '}',
    '{',
    u'—',
    ]

for post in blog_data:
    sentences = nltk.tokenize.sent_tokenize(post['content'])

    words = [w.lower() for sentence in sentences for w in
             nltk.tokenize.word_tokenize(sentence)]

    fdist = nltk.FreqDist(words)

    # Basic stats

    num_words = sum([i[1] for i in fdist.items()])
    num_unique_words = len(fdist.keys())

    # Hapaxes are words that appear only once

    num_hapaxes = len(fdist.hapaxes())

    top_10_words_sans_stop_words = [w for w in fdist.items() if w[0]
                                    not in stop_words][:10]

    print post['title']
    print '\tNum Sentences:'.ljust(25), len(sentences)
    print '\tNum Words:'.ljust(25), num_words
    print '\tNum Unique Words:'.ljust(25), num_unique_words
    print '\tNum Hapaxes:'.ljust(25), num_hapaxes
    print '\tTop 10 Most Frequent Words (sans stop words):\n\t\t', \
            '\n\t\t'.join(['%s (%s)'
            % (w[0], w[1]) for w in top_10_words_sans_stop_words])
    print

Example 6. A document summarization algorithm based principally upon sentence detection and frequency analysis within sentences

In [ ]:
import json
import nltk
import numpy

BLOG_DATA = "resources/ch05-webpages/feed.json"

N = 100  # Number of words to consider
CLUSTER_THRESHOLD = 5  # Distance between words to consider
TOP_SENTENCES = 5  # Number of sentences to return for a "top n" summary

# Approach taken from "The Automatic Creation of Literature Abstracts" by H.P. Luhn

def _score_sentences(sentences, important_words):
    scores = []
    sentence_idx = -1

    for s in [nltk.tokenize.word_tokenize(s) for s in sentences]:

        sentence_idx += 1
        word_idx = []

        # For each word in the word list...
        for w in important_words:
            try:
                # Compute an index for where any important words occur in the sentence.

                word_idx.append(s.index(w))
            except ValueError, e: # w not in this particular sentence
                pass

        word_idx.sort()

        # It is possible that some sentences may not contain any important words at all.
        if len(word_idx)== 0: continue

        # Using the word index, compute clusters by using a max distance threshold
        # for any two consecutive words.

        clusters = []
        cluster = [word_idx[0]]
        i = 1
        while i < len(word_idx):
            if word_idx[i] - word_idx[i - 1] < CLUSTER_THRESHOLD:
                cluster.append(word_idx[i])
            else:
                clusters.append(cluster[:])
                cluster = [word_idx[i]]
            i += 1
        clusters.append(cluster)

        # Score each cluster. The max score for any given cluster is the score 
        # for the sentence.

        max_cluster_score = 0
        for c in clusters:
            significant_words_in_cluster = len(c)
            total_words_in_cluster = c[-1] - c[0] + 1
            score = 1.0 * significant_words_in_cluster \
                * significant_words_in_cluster / total_words_in_cluster

            if score > max_cluster_score:
                max_cluster_score = score

        scores.append((sentence_idx, score))

    return scores

def summarize(txt):
    sentences = [s for s in nltk.tokenize.sent_tokenize(txt)]
    normalized_sentences = [s.lower() for s in sentences]

    words = [w.lower() for sentence in normalized_sentences for w in
             nltk.tokenize.word_tokenize(sentence)]

    fdist = nltk.FreqDist(words)

    top_n_words = [w[0] for w in fdist.items() 
            if w[0] not in nltk.corpus.stopwords.words('english')][:N]

    scored_sentences = _score_sentences(normalized_sentences, top_n_words)

    # Summarization Approach 1:
    # Filter out nonsignificant sentences by using the average score plus a
    # fraction of the std dev as a filter

    avg = numpy.mean([s[1] for s in scored_sentences])
    std = numpy.std([s[1] for s in scored_sentences])
    mean_scored = [(sent_idx, score) for (sent_idx, score) in scored_sentences
                   if score > avg + 0.5 * std]

    # Summarization Approach 2:
    # Another approach would be to return only the top N ranked sentences

    top_n_scored = sorted(scored_sentences, key=lambda s: s[1])[-TOP_SENTENCES:]
    top_n_scored = sorted(top_n_scored, key=lambda s: s[0])

    # Decorate the post object with summaries

    return dict(top_n_summary=[sentences[idx] for (idx, score) in top_n_scored],
                mean_scored_summary=[sentences[idx] for (idx, score) in mean_scored])

blog_data = json.loads(open(BLOG_DATA).read())

for post in blog_data:
       
    post.update(summarize(post['content']))

    print post['title']
    print '=' * len(post['title'])
    print
    print 'Top N Summary'
    print '-------------'
    print ' '.join(post['top_n_summary'])
    print
    print 'Mean Scored Summary'
    print '-------------------'
    print ' '.join(post['mean_scored_summary'])
    print

Example 7. Visualizing document summarization results with HTML output

In [ ]:
import os
import json
import nltk
import numpy
from IPython.display import IFrame
from IPython.core.display import display

BLOG_DATA = "resources/ch05-webpages/feed.json"

HTML_TEMPLATE = """<html>
    <head>
        <title>%s</title>
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
    </head>
    <body>%s</body>
</html>"""

blog_data = json.loads(open(BLOG_DATA).read())

for post in blog_data:
   
    # Uses previously defined summarize function.
    post.update(summarize(post['content']))

    # You could also store a version of the full post with key sentences marked up
    # for analysis with simple string replacement...

    for summary_type in ['top_n_summary', 'mean_scored_summary']:
        post[summary_type + '_marked_up'] = '<p>%s</p>' % (post['content'], )
        for s in post[summary_type]:
            post[summary_type + '_marked_up'] = \
            post[summary_type + '_marked_up'].replace(s, '<strong>%s</strong>' % (s, ))

        filename = post['title'].replace("?", "") + '.summary.' + summary_type + '.html'
        f = open(os.path.join('resources', 'ch05-webpages', filename), 'w')
        html = HTML_TEMPLATE % (post['title'] + \
          ' Summary', post[summary_type + '_marked_up'],)
              
        f.write(html.encode('utf-8'))
        f.close()

        print "Data written to", f.name

# Display any of these files with an inline frame. This displays the
# last file processed by using the last value of f.name...

print "Displaying %s:" % f.name
display(IFrame('files/%s' % f.name, '100%', '600px'))

Example 8. Extracting entities from a text with NLTK

In [ ]:
import nltk
import json

BLOG_DATA = "resources/ch05-webpages/feed.json"

blog_data = json.loads(open(BLOG_DATA).read())

for post in blog_data:

    sentences = nltk.tokenize.sent_tokenize(post['content'])
    tokens = [nltk.tokenize.word_tokenize(s) for s in sentences]
    pos_tagged_tokens = [nltk.pos_tag(t) for t in tokens]

    # Flatten the list since we're not using sentence structure
    # and sentences are guaranteed to be separated by a special
    # POS tuple such as ('.', '.')

    pos_tagged_tokens = [token for sent in pos_tagged_tokens for token in sent]

    all_entity_chunks = []
    previous_pos = None
    current_entity_chunk = []
    for (token, pos) in pos_tagged_tokens:

        if pos == previous_pos and pos.startswith('NN'):
            current_entity_chunk.append(token)
        elif pos.startswith('NN'):
            if current_entity_chunk != []:

                # Note that current_entity_chunk could be a duplicate when appended,
                # so frequency analysis again becomes a consideration

                all_entity_chunks.append((' '.join(current_entity_chunk), pos))
            current_entity_chunk = [token]

        previous_pos = pos

    # Store the chunks as an index for the document
    # and account for frequency while we're at it...

    post['entities'] = {}
    for c in all_entity_chunks:
        post['entities'][c] = post['entities'].get(c, 0) + 1

    # For example, we could display just the title-cased entities

    print post['title']
    print '-' * len(post['title'])
    proper_nouns = []
    for (entity, pos) in post['entities']:
        if entity.istitle():
            print '\t%s (%s)' % (entity, post['entities'][(entity, pos)])
    print

Example 9. Discovering interactions between entities

In [ ]:
import nltk
import json

BLOG_DATA = "resources/ch05-webpages/feed.json"

def extract_interactions(txt):
    sentences = nltk.tokenize.sent_tokenize(txt)
    tokens = [nltk.tokenize.word_tokenize(s) for s in sentences]
    pos_tagged_tokens = [nltk.pos_tag(t) for t in tokens]

    entity_interactions = []
    for sentence in pos_tagged_tokens:

        all_entity_chunks = []
        previous_pos = None
        current_entity_chunk = []

        for (token, pos) in sentence:

            if pos == previous_pos and pos.startswith('NN'):
                current_entity_chunk.append(token)
            elif pos.startswith('NN'):
                if current_entity_chunk != []:
                    all_entity_chunks.append((' '.join(current_entity_chunk),
                            pos))
                current_entity_chunk = [token]

            previous_pos = pos

        if len(all_entity_chunks) > 1:
            entity_interactions.append(all_entity_chunks)
        else:
            entity_interactions.append([])

    assert len(entity_interactions) == len(sentences)

    return dict(entity_interactions=entity_interactions,
                sentences=sentences)

blog_data = json.loads(open(BLOG_DATA).read())

# Display selected interactions on a per-sentence basis

for post in blog_data:

    post.update(extract_interactions(post['content']))

    print post['title']
    print '-' * len(post['title'])
    for interactions in post['entity_interactions']:
        print '; '.join([i[0] for i in interactions])
    print

Example 10. Visualizing interactions between entities with HTML output

In [ ]:
import os
import json
import nltk
from IPython.display import IFrame
from IPython.core.display import display

BLOG_DATA = "resources/ch05-webpages/feed.json"

HTML_TEMPLATE = """<html>
    <head>
        <title>%s</title>
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
    </head>
    <body>%s</body>
</html>"""

blog_data = json.loads(open(BLOG_DATA).read())

for post in blog_data:

    post.update(extract_interactions(post['content']))

    # Display output as markup with entities presented in bold text

    post['markup'] = []

    for sentence_idx in range(len(post['sentences'])):

        s = post['sentences'][sentence_idx]
        for (term, _) in post['entity_interactions'][sentence_idx]:
            s = s.replace(term, '<strong>%s</strong>' % (term, ))

        post['markup'] += [s] 
            
    filename = post['title'].replace("?", "") + '.entity_interactions.html'
    f = open(os.path.join('resources', 'ch05-webpages', filename), 'w')
    html = HTML_TEMPLATE % (post['title'] + ' Interactions', 
                            ' '.join(post['markup']),)
    f.write(html.encode('utf-8'))
    f.close()

    print "Data written to", f.name
    
    # Display any of these files with an inline frame. This displays the
    # last file processed by using the last value of f.name...
    
    print "Displaying %s:" % f.name
    display(IFrame('files/%s' % f.name, '100%', '600px'))